Doseur de poudre

Doseur de poudre

LAMBDA DOSER / Hi-DOSER est un doseur automatique de poudre qui permet la dosage de poudres, de granulés, de cristaux, de substances solides et de réactifs.

Le doseur de poudres LAMBDA DOSER / Hi-DOSER est une pompe programmable unique pour substances solides fluides (ruisselantes). Le LAMBDA DOSER / Hi-DOSER permet l'addition automatique ou en continu de poudres, substances poudreuses et cristallines.

 

Le doseur de poudres qui modernisera votre laboratoire

Le doseur de poudres LAMBDA DOSER / Hi-DOSER modernisera votre laboratoire: Le doseur de poudres consiste d'une unité de dosage et d'un moteur pas-à-pas contrôlé digitalement par une électronique moderne. Le LAMBDA DOSER / Hi-DOSER permet ainsi un dosage constant et reproductible. Le doseur de poudre offre différentes possibilités de contrôle à distance est se prête particulièrement bien pour le contrôle automatique d'une multitude de processus.

Images: www.lambda-instruments.com/fr/doseur-de-poudre/doser-hidoser-images/

 

Propriétés du doseur de poudres LAMBDA DOSER / Hi-DOSER

Les propriétés du doseur de poudre LAMBDA DOSER / Hi-DOSER sont les suivantes:

 

Vitesse de dosage de poudre

Le contrôle digital de la vitesse de dosage de 0 à 999 permet une bonne reproductibilité du débit (p.ex. NaCl):

  •   50 mg/min à   50 g/min de NaCl pour le LAMBDA DOSER
  • 250 mg/min à 250 g/min de NaCl pour le LAMBDA HI-DOSER (FAST mode)
  •   60 mg/min à   60 g/min de NaCl pour le LAMBDA HI-DOSER (SLOW mode)


LAMBDA DOSER et Hi-DOSER sont programmables

Vitesse de dosage et temps de dosage peuvent être facilement programmés: 

  • DOSER: jusqu’à 27 pas avec vitesse et durée
  • Hi-DOSER: jusqu’à 99 pas avec vitesse et durée


Capacité

Récipient de verre d’environ 200 ml (correspond à 250 g de NaCl, 200 g de NaHCO3, 150 g de sucrose). Cette capacité est optimale pour la plupart des travaux de laboratoire. Les récipients plus grands d’environ 1l et 3L sont aussi disponibles.


Sécurité

Grâce au LAMBDA DOSER / Hi-DOSER l’addition de substances chimiques pulvérulentes devient reproductible, sûre et conforme aux normes de sécurité et standards de qualité (GLP), comme ils sont prescrits pour la manipulation de produits chimiques au laboratoire. Sa construction hermétique permet la manipulation sûre de substances solides dangereuses et toxiques.

 

Atmosphère contrôlée

Plusieurs joints assurent l’étanchéité du doseur qui peut être donc utilisé avec une légère surpression ou un faible vide. Si une réaction le requiert, l’appareil peut aussi être rincé avec un gaz inerte au cours du dosage.


Montage et nettoyage faciles

Le LAMBDA DOSER / Hi-DOSER a été construit de façon à permettre un montage simple et un nettoyage facile.

Le doseur de poudre peut être connecté à tout récipient de verre muni d’un rodage standardisé NS 29/32 ou une connexion à vis SVL. T

outes les parties en contact avec les substances pulvérulentes sont fabriquées de matériaux chimiquement résistants.

 

Faibles dimensions

Une attention toute particulière a été portée sur la minimisation de la taille du doseur. Par conséquent le LAMBDA DOSER / Hi-DOSER peut être facilement monté sur des appareillages de laboratoire complexes. Sa construction robuste et la haute qualité du matériel utilisée assurent au LAMBDA DOSER / Hi-DOSER une longue durée de vie.

Les dimensions vous trouver sur www.dosage-poudres.com/specifications-techniques/ .

 

Dosage de poudre économique

L’addition automatique de substances solides libère l’expérimentateur pour d’autres travaux. Le doseur permet la réduction du nombre d’expériences grâce à une meilleure reproductibilité du débit et évite la répétition d’expériences due aux erreurs de manipulation. Le LAMBDA DOSER / Hi-DOSER présente un excellent rapport qualité-prix.


Contrôle à distance pour la dosage de poudre

Le contrôle à distance permet la commande de la vitesse de dosage de poudre sur toute la plage de vitesse de rotation par l’application d’une tension entre 0 et 10V. L’enclenchement et le déclenchement (ON/OFF) est effectué par un simple contact externe ou un signal de 12 V.

L’interface RS-485 ou RS-232 (en option) permet une commande avancée depuis l’ordinateur (débits variables, gradients de dosage etc.)

Un logiciel de contrôle  PNet est aussi disponible en option.


Quantification du dosage de poudre

Le LAMBDA DOSER / Hi-DOSER peut être configuré avec l’intégrateur électronique LAMBDA INTEGRATOR (en option) qui permet de déterminer la quantité de poudre ajoutée en fonction du temps. LAMBDA INTEGRATOR fournit des informations importantes sur le processus et les réactions quand le doseur est réglé p.ex. par un pH-stat, thermostat etc.

Type: LAMBDA DOSER / Hi-DOSER – appareil programmable de distribution de poudre contrôlé par microprocesseur
Programmation: DOSER: jusqu'à 27 pas avec vitesse et durée; Hi-DOSER: jusqu'à 99 pas avec vitesse et durée
Résolution temporelle: De 0 à 999 minutes par pas de 1 minute ou de 0 à 99.9 minutes par pas de 0.1 minute, la résolution de temps peut être sélectionnée individuellement pour chaque pas de programmation
Moteur: DOSER: Moteur pas à pas contrôlé par microprocesseur; Hi-DOSER: Moteur sans balai à courant continu (BLDC) pourvu d’aimants au néodymium contrôlé par microprocesseur
Gamme de vitesses: 0 à 999
Interface: RS-485 ou RS-232 (option)
Alimentation électrique: DOSER: Alimentation 95–240 V/50–60 Hz AC avec sortie DC 12V/12W; possibilité d’utiliser une batterie 12 V; Hi-DOSER: Alimentation 95–240 V/50–60 Hz AC avec sortie DC 12V/50W; possibilité d’utiliser une batterie 12 V (types de prises: AU, CH, EU, UK, US)
Volume: Cuve en verre d’env. 0.2 L, 1 L ou 3 L
Dimensions: DOSER: Bloc moteur: 6 (H) x 7 (L) x 13 (P) cm; Hi-DOSER: Bloc moteur: 10.5 (L) x 9.5 (H) x 13 (P) cm; Cuve en verre de 0.2 l: 30 (H) x 12 (L) x 5 (P) cm; Cuve en verre de 1 l: 30 (H) x 18 (L) x 14 (P) cm; Cuve en verre de 3 l: 38 (H) x 21 (L) x 17.5 (P) cm.
Sécurité: CE, selon la norme IEC 1010/1 pour les instruments de laboratoire
Température de fonctionnement: 0 - 40 °C
Humidité de fonctionnement: 0-90 % RH, sans condensation
Contrôle à distance: 0-10 V (contrôle de la vitesse); 3-12 V DC (contrôle ON/OFF); option 0-20 ou 4-20 mA; pédale marche-arrêt
Software: PNet, logiciel pour PC (option)

2023

Lithium-Ion Battery: Feeding of precursor powder (Silicon & ferrocene [Fe(C5H5)2]; 1 g/min) into surface-wave-sustained (SWS) plasma column (core temperature >4000 K)

Jie, Z., Zhang, Z., Bai, X., Ma, W., Zhao, X., Chen, Q. & Zhang, G. (2023). Surface-wave-sustained plasma synthesis of graphene@Fe–Si nanoparticles for lithium-ion battery anodes. Appl. Phys. Lett. 11 September 2023; 123 (11): 113902. 

https://doi.org/10.1063/5.0159269

Keywords: plasma synthesis, graphene@Fe-SI, nanoparticles, lithium-ion battery, anodes, silicon, Ferrocen, LIB, precursor, swirling flow, SWS plasma 


2022 

Experimental channel for magnetic particles separation: In the first step, the fly ash was dosed by a LAMBDA dosing system with 1L vessel (mounted above a tray in the middle of the cross-section of the channel) into the horizontal channel and got dispersed by compressed air (3 bar) flowing from a flat nozzle onto the tray.

Czech, T. (2022). Morphology and chemical composition of magnetic particles separated from coal fly ash. Materials, 15(2), 528.
https://doi.org/10.3390/ma15020528

Keywords: fly ash, magnetic particles, electrostatic precipitator, coal combustion


Powder dosing of Al2O3 and other dried sieved particles in a closed-loop aerosol generator: The particles were dosed with a volumetric powder doser LAMBDA DOSER 0.2 L into a 1⁄4” T-piece where the powder got picked up by a stream of compressed air (5 L/min) and guided as aerosol through the installation stream.

Prüfert, C., Beitz, T., Reich, O. & Löhmannsröben, H.-G. (2022). Inline process analysis of copper-bearing aerosols using laser-induced breakdown spectroscopy, laser-induced incandescence and optical imaging. Spectrochimica Acta Part B: Atomic Spectroscopy 197 (2022) 106527.
https://doi.org/10.1016/j.sab.2022.106527 

Keywords: LIBS, LII, Aerosol. photoacoustics, Stroboscopic imaging, Minerals


Coal particles were introduced into the reactor through a N2-purged microprocessor-controlled programmable powder pump feeder (HI-DOSER, LAMBDA) positioned above the reactor tube...The advantage of this powder pump feeder is that the feeding amount is relatively uniform, avoiding the clogging of the feeder and instability of the gas production.

Dai, T., Xu, C., Zhang, Q., Liu, X., Chang, Z. & Yang, Y. (2022). Experimental study of the solar-driven steam gasification of coal in an improved updraft combined drop-tube and fixed-bed reactor. Energy Conversion and Management, Volume 259,2022,115571,ISSN 0196-8904.
https://doi.org/10.1016/j.enconman.2022.115571

Keywords: Solar-driven gasification, Updraft reactor, Syngas production, Parameter analysis


The integral dissolution heat of the acid-base neutralization was measured in a stirred reactor using a reaction calorimeter (RC1e, Mettler Toledo Ltd.) while LAMBDA DOSER continuously fed acid or base as solids: 23.6 g/min citric acid; 30 g/min NaOH; 21 g/min NaOH; 14.8 g/min NaOH; 7.2 g/min NaOH

Ran, Z., Ni, L., Pan, Y., Chen, Y., Wang, J., Jiang, J. & Shu, C-M. (2022). Safety Criteria for Solid–Liquid Heterogeneous Systems in Semibatch Reactors. ACS Omega 2022 7 (24), 21207-21219 
https://doi.org/10.1021/acsomega.2c02139

Keywords: Chemical reactions, Dissolution, Liquids, Safety


Catalytic pyrolysis experimental setup: A programmable feeder (LAMBDA DOSER 1L) dispensed plastic pellets, typically at a feeding rate of 120 g/h, into aquartz reactor, which contained 1 kg of 8 mm silicon carbide balls. The ball bed was heated and maintained at 500 ◦C for all tests in this study bya programmable microwave heating system.

Zhou, N., Dai, L., Lyu, Y., Wang, Y., Li, H., Cobb, K., Chen, P., Lei, H. & Ruan, R. (2022). A structured catalyst of ZSM-5/SiC foam for chemical recycling of waste plastics via catalytic pyrolysis. Chemical Engineering Journal, Volume 440, 2022, 135836, ISSN 1385-8947.
https://doi.org/10.1016/j.cej.2022.135836 

Keywords: ZSM-5; Silicon carbide foam; Catalyst scale up; Waste plastics; Catalytic pyrolysis; Catalyst stability

 


2021


Experimental design for NOx conversion, comprising a vertically-entrained reactor and gas monitoring systems: A calibrated electronic powder doser (Lambda Laboratory Instruments) feeds the recycled plastic (cryogenically pulverised, 150–355 μm) at a constant low feeding rate of 7 mg/min, through a water-cooled probe, into a quartz reactor housed in an electrically heated three-zone furnace.

Oluwoye, I., Zeng, Z., Mosallanejad, S., Altarawneh, M., Gore, J., & Dlugogorski, B. Z. (2021). Controlling NOx emission from boilers using waste polyethylene as reburning fuel. Chemical Engineering Journal, 411, 128427.
https://doi.org/10.1016/j.cej.2021.128427

Keywords: Plastic wastes, polyethylene, NOx control, reburning, boiler, economic analysis


Determination of the solubility of itaconic acid dosed with a LAMBDA DOSER 0.2L solids feeder controlled by the PLS

Holtz, A., Görtz, J., Kocks, C., Junker, M., & Jupke, A. (2021). Automated measurement of pH-dependent solid-liquid equilibria of itaconic acid and protocatechuic acid. Fluid Phase Equilibria, 532, 112893.
https://doi.org/10.1016/j.fluid.2020.112893 

Keywords: solubility, pH shift crystallization, electrolyte influence, 2-Methylidenebutanedioic acid, 3,4-Dihydroxybenzoic acid


2020

Iron ore and lime feeding system: LAMBDA Hi-DOSER 1L powder dosing instrument manufactured by LAMBDA Laboratory Instruments, was used to charge the mixture of iron ore and additives fines continuously into the steel crucible during the test runs.

Naseri Seftejani, M. (2020). Reduction of hematite using hydrogen plasma smelting reduction (Doctoral Thesis, Montanuniversitaet Leoben).
https://pure.unileoben.ac.at/en/publications/reduction-of-hematite-using-hydrogen-plasma-smelting-reduction (2024 Feb. 26)

Keywords of the doctoral thesis: Hydrogen, plasma, hematite, iron oxide reduction


Laboratory Equipment for the hydrogen plasma smelting reduction (HPSR) process: The powder dosing system LAMBDA Hi-DOSER 0.2L was used to introduce continuous ~3 g/min Carajas hematite iron ore with the gas (40 % hydrogen in argon) through the hollow graphite electrode (HGE, inner diameter 5 mm).

Zarl, M. A., Farkas, M. A., & Schenk, J. (2020). A study on the stability fields of arc plasma in the HPSR process. Metals, 10(10), 1394.
https://doi.org/10.3390/met10101394

Keywords: Arc plasma, arc stability, smelting reduction, iron ore, hydrogen reduction


The feeder LAMBDA DOSER was placed on the top of the DTF to continuously and uniformly feed the pulverized coal with a flow rate of 0.6 to 0.7 g/min. Aims to investigate the hydropyrolysis behavior of pulverized bituminous coal in a drop-tube furnace (DTF) with a temperature of 800–1000 °C.

Gao, R., Dou, B., Chang, Q., Xu, J., Dai, Z., Yu, G., & Wang, F. (2020). Effect of temperature and hydrogen on product distribution and evolution of char structure during pyrolysis of bituminous coal in a drop tube furnace. Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai 200237, PR China.
https://doi.org/10.1016/j.fuel.2020.117078 

Keywords: Hydropyrolysis; DTFT; Tar composition; Char structure evolution.


 

The solid powder feeding system LAMBDA Hi-DOSER 1L was used to feed the premixed iron ore and lime continuously into the plasma arc zone during the arc operation. The powder dispenser consists of a dosing unit and a powder distributor coupled to a stepping motor to control the number of turns per minute and accordingly the dispensing rate.

Seftejani, M. N., Schenk, J., Spreitzer, D., & Zarl, M. A. (2020). Slag Formation during Reduction of Iron Oxide Using Hydrogen Plasma Smelting Reduction. Materials 2020, 13, 935;
https://doi.org/10.3390/ma13040935 

Keywords: slag; basicity; hydrogen plasma; smelting reduction; iron oxide; plasma arc; hydrogen utilisation; degree of reduction; hematite


2019

 

Alumina Feeding: During electrolysis, alumina (aluminum oxide) was continuously fed to the electrolyte with dosing equipment supplied by LAMBDA Laboratory Instruments. The LAMBDA DOSER was adjusted to continuously feed about 70 - 80% of the alumina needed to perform electrolysis at 100 % current efficiency.

Gunnarsson, G., Óskarsdóttir, G., Frostason, S., & Magnússon, J. H. (2019). Aluminum electrolysis with multiple vertical non-consumable electrodes in a low temperature electrolyte. In Light Metals 2019 (pp. 803-810). Springer International Publishing.
https://doi.org/10.1007/978-3-030-05864-7_98

Keywords: Aluminum electrolysis, Inert anode, Metal anode, TiB2 cathode, Low temperature electrolyte 


 

Experimental setup: A) gas & solid feeding LAMBDA DOSER systems; B) reaction zone and electrical furnace; C) optical sensing system

Díaz, W., Toro, C., Balladares, E., Parra, V., Coelho, P., Reyes, G., & Parra, R. (2019). Spectral characterization of copper and iron sulfide combustion: A multivariate data analysis approach for mineral identification on the blend. Metals, 9(9), 1017.
https://doi.org/10.3390/met9091017 

Keywords: copper concentrate; pyrometallurgy; flash smelting; combustion; classification; spectroscopy; PCA; SIMCA; PLS-DA; k-NN; support vector machines; rotary feeder; solid feeder


2016


Feeding operation of fed-batch enzymatic hydrolysis conducted by LAMBDA DOSER which received timely commands from LabVIEW (fuzzy logic control system)

Tai, C., Voltan, D. S., Keshwani, D. R., Meyer, G. E., & Kuhar, P. S. (2016). Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass. Bioprocess and biosystems engineering, 39, 937-944.
https://doi.org/10.1007/s00449-016-1573-1 

Keywords: Fuzzy Logic Control; Cellulose Conversion Rate; Acid-pretreated Corn Stover; Pretreated Corn Stover; Batch Enzymatic Hydrolysis; Enzyme Feeding; Pretreated Biomass; High Solid Loading; Corn Stover Sample; Glucose Concentration; Glucose Release Rate


2015

Pre-treated (over dried at 60 %, moisture content 2.38 %) lignocellulosic biomass feeding operation for fed-batch enzymatic hydrolysis was controlled by programmed LAMBDA powder DOSER

Tai, C., Keshwani, D. R., Voltan, D. S., Kuhar, P. S., & Engel, A. J. (2015). Optimal control strategy for fed‐batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling. Biotechnology and bioengineering, 112(7), 1376-1382.
https://doi.org/10.1002/bit.25552 

Keywords: Biofuels; Enzymatic hydrolysis; Epidemic model; Fed-batch; Optimal control


2014


Established amounts of spherical and transparent glass particles simulating fuel droplets were introduced into the channel using LAMBDA powder dosing device

Bodoc, V., & Voicu, D. (2014, July). Experimental investigation of the infrared extinction limitations for vapor concentration measurement in a gas/particle flow. In 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics.
HAL Id : hal-01079181 , version 1
https://hal.archives-ouvertes.fr/hal-01079181/document (2024 Feb 22)

Keywords: Light Scattering; Vapor Molar Concentration; Infrared Absorption; Laser Beam 


Dried and sieved bagasse particles were fed by the calibrated feeder (LAMBDA DOSER) into the drop-tube trickle-bed reactor

Krüsi, M. (2014). Heat transfer enhancement in a solar biomass gasifier. Eidgenössische Technische Hochschule ETH Zürich (Nr. 21821).
https://doi.org/10.3929/ethz-a-010256755 

Keywords: Alternative Energies; Biomass; Fuel Technology; Synthesis Gas


2013


The reactor is fitted with the LAMBDA POWDER DOSER to supply solid NaBH4 continuously

Muir, Sean S. (2013). Sodium borohydride production and utilisation for improved hydrogen storage. PhD Thesis. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland.

https://doi.org/10.14264/uql.2016.540 


2011


LAMBDA Powder DOSER used as a particle feeder for Drop Tube Reactor (DTR)

Hampp, F., & Janajreh, I. (2011). Development of a drop tube reactor to test and assist a sustainable manufacturing process. In Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing (pp. 141-148). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-20183-7_21 

Keywords: Gasification, Drop Tube Reactor, Sustainable Product, Development, Small Scale Experiments, Simulation Assisted Design


2012


Copper chloride fed into the quartz reactor by LAMBDA Powder Feeder for producing carbon-coated copper nanoparticles by vapor-phase reduction

Eiroma, K., Forsman, J., Hult, E.-L., Auvinen, A., Sipiläinen-Malm, T., Alastalo, A., Tapper, U., Leppäniemi, J., Mattila, P., Lyyränen, J., Sarlin, J., Jokiniemi, J., & Mössmer, S. (2012). Water-Based Carbon-Coated Copper Nanoparticle-Fluid Formation of Conductive Layers at Low Temperature by Spin Coating and Inkjet Deposition. Journal of Imaging Science and Technology, 56(4), 40501-1-40501-10 (10).
https://doi.org/10.2352/J.ImagingSci.Technol.2012.56.4.040501 

Keywords: Sedimentation, deposition, copper chloride, nanoparticles, Ethylene glycol, carbon, vapour phase reduction, porous alumina, CNT


2011


Continuous feeding of Copper chloride powder on alumina (Al2O3) pellet bed within a quartz glass nanoparticle reactor to develop Carbon coated copper nanoparticle Inkjet Fluid

Eiroma, K., Auvinen, A., Forsman, J., Hult, E. L., Jokiniemi, J., Koskela, P., Sarlin, J., Sipiläinen-Malm, T., & Tapper, U. (2011, January). Development of conductive carbon coated copper nanoparticle inkjet fluid. In NIP & Digital Fabrication Conference (Vol. 2011, No. 2, pp. 458-461). Society for Imaging Science and Technology.
https://citeseerx.ist.psu.edu/doc_view/pid/d22f2a68bdaaa4054fc32e50d30afa87ef2c185c (2024 Feb. 22)
PDF: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d22f2a68bdaaa4054fc32e50d30afa87ef2c185c (2024 Feb. 22)

Keywords: continuous, flow reactor, copper chloride, nanoparticles, gas phase, aluminium oxide, carbon nanotubes, CNT, inkjet, spin coating


2007

Timed particle additions using LAMBDA Powder DOSER to study the fabrication and evaluation of the ferroelectric reinforced metal matrix composites (FR-MMCs)

Poquette, B. D. (2007). Understanding Ferroelastic Domain Reorientation as a Damping Mechanism in Ferroelectric Reinforced Metal Matrix Composites (Doctoral dissertation, Virginia Tech).
https://hdl.handle.net/10919/29169 (2024 Feb. 22)

Keywords: Dispersion Strengthening, Electroforming, Electrodeposition, Electroless Plating, Metal Matrix Composites, Damping, Ferroelectric, Ferroelastic, Twinning

 

 

 

 

 

What is the lead time of Powder Doser?

We have DOSERs in stock and it can be delivered to you within a few days from order. Practically, it is only the time taken for shipping


Do you accept Credit Card payments?

You can pay using your credit card via PayPal. Most importantly, it is not necessary to have a PayPal account to make the payment via credit card.


Could you please confirm the particle size that can be fed by the dosing system?

The biggest particle size for powders that could be dosed with our DOSER is about 4 mm. A good dosing of powders depends essentially on the flowing properties of the respective powders to be dosed. In general, homogeneous and free-flowing powders can be dosed best.


How does the LAMBDA DOSER work with the substances which are prone to agglomeration?

The powder / granules / solid must be properly treated for good flowing properties It is also possible to allow a gas flow to pass through the Lambda dosing vessel in order to create a controlled atmosphere.
It is often possible to substantially improve the flowing properties of the respective powder / granules / solid by adding Aerosil (fumed silica – pure SiO2) to your powder (~0.1 - 2% by weight).


How the LAMBDA DOSER reacts to abrasive powders?

In the case of abrasive materials being used with the LAMBDA Powder DOSER, you will have an opportunity to replace the glass vessel and / or the distributors as needed.


What is the accuracy of the each dispensing?

The motor of the driving unit is controlled with quartz-driven electronics, similarly as it is done in electronic watches.Therefore, the accuracy depends mainly on the powder. For best accuracy and precise doses, the powder needs to be free-flowing and homogeneous.


Can the DOSER control the mass flow rate (g/min) of the powder being dispensed?

It is always possible to control the mass flow rate of the powder using the LAMBDA Doser. You could program the DOSER up to 27 pairs of speed and time settings to control your desired mass flow rate (g/min).


Is it possible to control the DOSER via Mettler Toledo titroprocessor to dispense NaF to the titration process when required?

Yes, the powder DOSER can be controlled by Mettler Titration Excellence T50/T70/T90 via RS-232 communication (most common type of connection with Mettler accessories), to dispense the desired amount of powder to the titration process.
The powder DOSER has to be included as RS-232 control in the titroprocessor unit and the desired activity can be selected (e.g.: the signal would switch off the DOSER or switch it on, etc.)
For integration of DOSER with your Mettler titroprocessor, you would need the RS-232 interface activated in the powder dosing unit and RS-232 connection cable.